3.1.51 \(\int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx\) [51]

3.1.51.1 Optimal result
3.1.51.2 Mathematica [C] (verified)
3.1.51.3 Rubi [A] (verified)
3.1.51.4 Maple [A] (verified)
3.1.51.5 Fricas [B] (verification not implemented)
3.1.51.6 Sympy [F]
3.1.51.7 Maxima [F(-2)]
3.1.51.8 Giac [F]
3.1.51.9 Mupad [B] (verification not implemented)

3.1.51.1 Optimal result

Integrand size = 23, antiderivative size = 247 \[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=-\frac {(a+b) e^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}+\frac {(a+b) e^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}-\frac {(a-b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {(a-b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d} \]

output
-2/3*b*(e*cot(d*x+c))^(3/2)/d-1/2*(a+b)*e^(3/2)*arctan(1-2^(1/2)*(e*cot(d* 
x+c))^(1/2)/e^(1/2))/d*2^(1/2)+1/2*(a+b)*e^(3/2)*arctan(1+2^(1/2)*(e*cot(d 
*x+c))^(1/2)/e^(1/2))/d*2^(1/2)-1/4*(a-b)*e^(3/2)*ln(e^(1/2)+cot(d*x+c)*e^ 
(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/d*2^(1/2)+1/4*(a-b)*e^(3/2)*ln(e^(1/2) 
+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/d*2^(1/2)-2*a*e*(e*cot(d 
*x+c))^(1/2)/d
 
3.1.51.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.18 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.28 \[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=-\frac {2 e \sqrt {e \cot (c+d x)} \left (b \cot (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\tan ^2(c+d x)\right )+3 a \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\tan ^2(c+d x)\right )\right )}{3 d} \]

input
Integrate[(e*Cot[c + d*x])^(3/2)*(a + b*Cot[c + d*x]),x]
 
output
(-2*e*Sqrt[e*Cot[c + d*x]]*(b*Cot[c + d*x]*Hypergeometric2F1[-3/4, 1, 1/4, 
 -Tan[c + d*x]^2] + 3*a*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2])) 
/(3*d)
 
3.1.51.3 Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.97, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 4011, 3042, 4011, 3042, 4017, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (-e \tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (a-b \tan \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \sqrt {e \cot (c+d x)} (a e \cot (c+d x)-b e)dx-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )} \left (-b e-a \tan \left (c+d x+\frac {\pi }{2}\right ) e\right )dx-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {-a e^2-b \cot (c+d x) e^2}{\sqrt {e \cot (c+d x)}}dx-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b e^2 \tan \left (c+d x+\frac {\pi }{2}\right )-a e^2}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {e^2 (a e+b \cot (c+d x) e)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 e^2 \int \frac {a e+b \cot (c+d x) e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a+b) \int \frac {\cot (c+d x) e+e}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e \cot (c+d x)-1}d\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \int \frac {e-e \cot (c+d x)}{\cot ^2(c+d x) e^2+e^2}d\sqrt {e \cot (c+d x)}+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e-\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{\cot (c+d x) e+e+\sqrt {2} \sqrt {e \cot (c+d x)} \sqrt {e}}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 e^2 \left (\frac {1}{2} (a+b) \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} (a-b) \left (\frac {\log \left (e \cot (c+d x)+\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (e \cot (c+d x)-\sqrt {2} \sqrt {e} \sqrt {e \cot (c+d x)}+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}\)

input
Int[(e*Cot[c + d*x])^(3/2)*(a + b*Cot[c + d*x]),x]
 
output
(-2*a*e*Sqrt[e*Cot[c + d*x]])/d - (2*b*(e*Cot[c + d*x])^(3/2))/(3*d) + (2* 
e^2*(((a + b)*(-(ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[ 
2]*Sqrt[e])) + ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]]/(Sqrt[2] 
*Sqrt[e])))/2 + ((a - b)*(-1/2*Log[e + e*Cot[c + d*x] - Sqrt[2]*Sqrt[e]*Sq 
rt[e*Cot[c + d*x]]]/(Sqrt[2]*Sqrt[e]) + Log[e + e*Cot[c + d*x] + Sqrt[2]*S 
qrt[e]*Sqrt[e*Cot[c + d*x]]]/(2*Sqrt[2]*Sqrt[e])))/2))/d
 

3.1.51.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 
3.1.51.4 Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.23

method result size
parts \(-\frac {2 a e \left (\sqrt {e \cot \left (d x +c \right )}-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{d}+\frac {b \left (-\frac {2 \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+\frac {e^{2} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d}\) \(303\)
derivativedivides \(\frac {-\frac {2 b \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3}-2 a e \sqrt {e \cot \left (d x +c \right )}+2 e^{2} \left (\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d}\) \(306\)
default \(\frac {-\frac {2 b \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3}-2 a e \sqrt {e \cot \left (d x +c \right )}+2 e^{2} \left (\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d}\) \(306\)

input
int((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-2*a/d*e*((e*cot(d*x+c))^(1/2)-1/8*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+( 
e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^( 
1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/ 
4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1 
/2)+1)))+b/d*(-2/3*(e*cot(d*x+c))^(3/2)+1/4*e^2/(e^2)^(1/4)*2^(1/2)*(ln((e 
*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d 
*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1 
/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*c 
ot(d*x+c))^(1/2)+1)))
 
3.1.51.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 843 vs. \(2 (194) = 388\).

Time = 0.28 (sec) , antiderivative size = 843, normalized size of antiderivative = 3.41 \[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=-\frac {3 \, d \sqrt {-\frac {2 \, a b e^{3} + \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}} \log \left (-{\left (a^{4} - b^{4}\right )} e^{4} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + {\left ({\left (a^{3} - a b^{2}\right )} d e^{3} + \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} b d^{3}\right )} \sqrt {-\frac {2 \, a b e^{3} + \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}}\right ) \sin \left (2 \, d x + 2 \, c\right ) - 3 \, d \sqrt {-\frac {2 \, a b e^{3} + \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}} \log \left (-{\left (a^{4} - b^{4}\right )} e^{4} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - {\left ({\left (a^{3} - a b^{2}\right )} d e^{3} + \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} b d^{3}\right )} \sqrt {-\frac {2 \, a b e^{3} + \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}}\right ) \sin \left (2 \, d x + 2 \, c\right ) + 3 \, d \sqrt {-\frac {2 \, a b e^{3} - \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}} \log \left (-{\left (a^{4} - b^{4}\right )} e^{4} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + {\left ({\left (a^{3} - a b^{2}\right )} d e^{3} - \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} b d^{3}\right )} \sqrt {-\frac {2 \, a b e^{3} - \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}}\right ) \sin \left (2 \, d x + 2 \, c\right ) - 3 \, d \sqrt {-\frac {2 \, a b e^{3} - \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}} \log \left (-{\left (a^{4} - b^{4}\right )} e^{4} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - {\left ({\left (a^{3} - a b^{2}\right )} d e^{3} - \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} b d^{3}\right )} \sqrt {-\frac {2 \, a b e^{3} - \sqrt {-\frac {{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} e^{6}}{d^{4}}} d^{2}}{d^{2}}}\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, {\left (b e \cos \left (2 \, d x + 2 \, c\right ) + 3 \, a e \sin \left (2 \, d x + 2 \, c\right ) + b e\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{6 \, d \sin \left (2 \, d x + 2 \, c\right )} \]

input
integrate((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x, algorithm="fricas")
 
output
-1/6*(3*d*sqrt(-(2*a*b*e^3 + sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*d^2)/d 
^2)*log(-(a^4 - b^4)*e^4*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + 
 ((a^3 - a*b^2)*d*e^3 + sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*b*d^3)*sqrt 
(-(2*a*b*e^3 + sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*d^2)/d^2))*sin(2*d*x 
 + 2*c) - 3*d*sqrt(-(2*a*b*e^3 + sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*d^ 
2)/d^2)*log(-(a^4 - b^4)*e^4*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c 
)) - ((a^3 - a*b^2)*d*e^3 + sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*b*d^3)* 
sqrt(-(2*a*b*e^3 + sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*d^2)/d^2))*sin(2 
*d*x + 2*c) + 3*d*sqrt(-(2*a*b*e^3 - sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4 
)*d^2)/d^2)*log(-(a^4 - b^4)*e^4*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 
 2*c)) + ((a^3 - a*b^2)*d*e^3 - sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*b*d 
^3)*sqrt(-(2*a*b*e^3 - sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*d^2)/d^2))*s 
in(2*d*x + 2*c) - 3*d*sqrt(-(2*a*b*e^3 - sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6 
/d^4)*d^2)/d^2)*log(-(a^4 - b^4)*e^4*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d 
*x + 2*c)) - ((a^3 - a*b^2)*d*e^3 - sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4) 
*b*d^3)*sqrt(-(2*a*b*e^3 - sqrt(-(a^4 - 2*a^2*b^2 + b^4)*e^6/d^4)*d^2)/d^2 
))*sin(2*d*x + 2*c) + 4*(b*e*cos(2*d*x + 2*c) + 3*a*e*sin(2*d*x + 2*c) + b 
*e)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)))/(d*sin(2*d*x + 2*c))
 
3.1.51.6 Sympy [F]

\[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=\int \left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}} \left (a + b \cot {\left (c + d x \right )}\right )\, dx \]

input
integrate((e*cot(d*x+c))**(3/2)*(a+b*cot(d*x+c)),x)
 
output
Integral((e*cot(c + d*x))**(3/2)*(a + b*cot(c + d*x)), x)
 
3.1.51.7 Maxima [F(-2)]

Exception generated. \[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.51.8 Giac [F]

\[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=\int { {\left (b \cot \left (d x + c\right ) + a\right )} \left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \]

input
integrate((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x, algorithm="giac")
 
output
integrate((b*cot(d*x + c) + a)*(e*cot(d*x + c))^(3/2), x)
 
3.1.51.9 Mupad [B] (verification not implemented)

Time = 13.86 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.62 \[ \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx=\frac {{\left (-1\right )}^{1/4}\,b\,e^{3/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d}-\frac {2\,a\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d}-\frac {2\,b\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}{3\,d}-\frac {{\left (-1\right )}^{1/4}\,b\,e^{3/2}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,e^{3/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,e^{3/2}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d} \]

input
int((e*cot(c + d*x))^(3/2)*(a + b*cot(c + d*x)),x)
 
output
((-1)^(1/4)*b*e^(3/2)*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/d 
 - (2*a*e*(e*cot(c + d*x))^(1/2))/d - ((-1)^(1/4)*a*e^(3/2)*atan(((-1)^(1/ 
4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - ((-1)^(1/4)*a*e^(3/2)*atanh((( 
-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - (2*b*(e*cot(c + d*x))^( 
3/2))/(3*d) - ((-1)^(1/4)*b*e^(3/2)*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/ 
2))/e^(1/2)))/d